AIO编程示例

NIO 2.0的异步套接字通道是真正的异步非阻塞I/O,对应于UNIX网络编程中的事件驱动I/O(AIO)。它不需要通过多路复用器(Seletor)对注册的通道进行轮询操作即可实现异步读写,从而简化了NIO的编程模型。

NIO 2.0引进了新的异步通道的概念,并提升了异步文件通道异步套接字通道的实现。异步通道提供了以下两种方式获取操作结果。

  • 通过java.util.concurrent.Future类来表示异步操作的结果。
  • 在执行异步操作的时候传入一个java.nio.channels。

CompletionHandler接口的实现类作为操作完成的回调。

AIO服务端源码分析

首先看下时间服务器的主函数

代码清单1 AIO时间服务器服务端 TimeClientHandle

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public class TimeServer {
/**
* @param args
* @throws IOException
*/
public static void main(String[] args) throws IOException {
int port = 8080;
if (args != null && args.length > 0) {
try {
port = Integer.valueOf(args[0]);
} catch (NumberFormatException e) {
// 采用默认值
}
}
AsyncTimeServerHandler timeServer = new AsyncTimeServerHandler(port);
new Thread(timeServer, "AIO-AsyncTimeServerHandler-001").start();
}
}

我们直接从第16行开始看,首先创建异步的时间服务器处理类,然后启动线程将AsyncTimeServerHandler拉起,代码如下:
代码清单2 AIO时间服务器服务端

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
public class AsyncTimeServerHandler implements Runnable {
private int port;
CountDownLatch latch;
AsynchronousServerSocketChannel asynchronousServerSocketChannel;
public AsyncTimeServerHandler(int port) {
this.port = port;
try {
asynchronousServerSocketChannel = AsynchronousServerSocketChannel
.open();
asynchronousServerSocketChannel.bind(new InetSocketAddress(port));
System.out.println("The time server is start in port : " + port);
} catch (IOException e) {
e.printStackTrace();
}
}
/*
* (non-Javadoc)
*
* @see java.lang.Runnable#run()
*/
@Override
public void run() {
latch = new CountDownLatch(1);
doAccept();
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public void doAccept() {
asynchronousServerSocketChannel.accept(this,
new AcceptCompletionHandler());
}
}

服务端通道AsynchronousServerSocketChannel,然后调用它的bind方法绑定监听端口,如果端口合法且没被占用,绑定成功,打印启动成功提示到控制台。
在线程的run方法中,第26行我们初始化CountDownLatch对象,它的作用是在完成一组正在执行的操作之前,允许当前的线程一直阻塞。在本例程中,我们让线程在此阻塞,防止服务端执行完成退出。在实际项目应用中,不需要启动独立的线程来处理AsynchronousServerSocketChannel,这里仅仅是个demo演示。
第24行用于接收客户端的连接,由于是异步操作,我们可以传递一个
CompletionHandler类型的handler实例接收accept操作成功的通知消息,在本例程中我们通过AcceptCompletionHandler实例作为handler接收通知消息,下面,我们继续对AcceptCompletionHandler进行分析:
代码清单3 AIO时间服务器服务端AcceptCompletionHandler

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class AcceptCompletionHandler implements
CompletionHandler<AsynchronousSocketChannel, AsyncTimeServerHandler> {
@Override
public void completed(AsynchronousSocketChannel result,
AsyncTimeServerHandler attachment) {
attachment.asynchronousServerSocketChannel.accept(attachment, this);
ByteBuffer buffer = ByteBuffer.allocate(1024);
result.read(buffer, buffer, new ReadCompletionHandler(result));
}
@Override
public void failed(Throwable exc, AsyncTimeServerHandler attachment) {
exc.printStackTrace();
attachment.latch.countDown();
}
}

CompletionHandler有两个方法,分别是:

1) public void completed(AsynchronousSocketChannel result,

AsyncTimeServerHandler attachment);

2) public void failed(Throwable exc, AsyncTimeServerHandler attachment);

下面我们分别对这两个接口的实现进行分析:首先看completed接口的实现,代码7-10行,我们从attachment获取成员变量AsynchronousServerSocketChannel,然后继续调用它的accept方法。可能读者在此可能会心存疑惑,既然已经接收客户端成功了,为什么还要再次调用accept方法呢?原因是这样的:当我们调用AsynchronousServerSocketChannel的accept方法后,如果有新的客户端连接接入,系统将回调我们传入的CompletionHandler实例的completed方法,表示新的客户端已经接入成功,因为一个AsynchronousServerSocketChannel可以接收成千上万个客户端,所以我们需要继续调用它的accept方法,接收其它的客户端连接,最终形成一个循环。每当接收一个客户读连接成功之后,再异步接收新的客户端连接。
链路建立成功之后,服务端需要接收客户端的请求消息,代码第8行我们创建新的ByteBuffer,预分配1M的缓冲区。第8行我们通过调用AsynchronousSocketChannel的read方法进行异步读操作。下面我们看看异步read方法的参数:

  • ByteBuffer dst:接收缓冲区,用于从异步Channel中读取数据包;

  • A attachment:异步Channel携带的附件,通知回调的时候作为入参使用;

  • CompletionHandler:接收通知回调的业务handler,本例程中为ReadCompletionHandler。

下面我们继续对ReadCompletionHandler进行分析:
代码清单4 AIO时间服务器服务端 ReadCompletionHandler

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
public class ReadCompletionHandler implements
CompletionHandler<Integer, ByteBuffer> {
private AsynchronousSocketChannel channel;
public ReadCompletionHandler(AsynchronousSocketChannel channel) {
if (this.channel == null)
this.channel = channel;
}
@Override
public void completed(Integer result, ByteBuffer attachment) {
attachment.flip();
byte[] body = new byte[attachment.remaining()];
attachment.get(body);
try {
String req = new String(body, "UTF-8");
System.out.println("The time server receive order : " + req);
String currentTime = "QUERY TIME ORDER".equalsIgnoreCase(req) ? new java.util.Date(
System.currentTimeMillis()).toString() : "BAD ORDER";
doWrite(currentTime);
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}
}
private void doWrite(String currentTime) {
if (currentTime != null && currentTime.trim().length() > 0) {
byte[] bytes = (currentTime).getBytes();
ByteBuffer writeBuffer = ByteBuffer.allocate(bytes.length);
writeBuffer.put(bytes);
writeBuffer.flip();
channel.write(writeBuffer, writeBuffer,
new CompletionHandler<Integer, ByteBuffer>() {
@Override
public void completed(Integer result, ByteBuffer buffer) {
// 如果没有发送完成,继续发送
if (buffer.hasRemaining())
channel.write(buffer, buffer, this);
}
@Override
public void failed(Throwable exc, ByteBuffer attachment) {
try {
channel.close();
} catch (IOException e) {
// ingnore on close
}
}
});
}
}
@Override
public void failed(Throwable exc, ByteBuffer attachment) {
try {
this.channel.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}

首先看构造方法,我们将AsynchronousSocketChannel通过参数传递到ReadCompletionHandler中当作成员变量来使用,主要用于读取半包消息和发送应答。本例程不对半包读写进行具体解说,对此感兴趣的可以关注后续章节对Netty半包处理的专题介绍。我们继续看代码,第12-25行是读取到消息后的处理,首先对attachment进行flip操作,为后续从缓冲区读取数据做准备。根据缓冲区的可读字节数创建byte数组,然后通过new String方法创建请求消息,对请求消息进行判断,如果是”QUERY TIME ORDER”则获取当前系统服务器的时间,调用doWrite方法发送给客户端。下面我们对doWrite方法进行详细分析。

跳到代码第28行,首先对当前时间进行合法性校验,如果合法,调用字符串的解码方法将应答消息编码成字节数组,然后将它拷贝到发送缓冲区writeBuffer中,最后调用AsynchronousSocketChannel的异步write方法。正如前面介绍的异步read方法一样,它也有三个与read方法相同的参数,在本例程中我们直接实现write方法的异步回调接口CompletionHandler,代码跳到第24行,对发送的writeBuffer进行判断,如果还有剩余的字节可写,说明没有发送完成,需要继续发送,直到发送成功。

最后,我们关注下failed方法,它的实现很简单,就是当发生异常的时候,我们对异常Throwable进行判断,如果是IO异常,就关闭链路,释放资源,如果是其它异常,按照业务自己的逻辑进行处理。本例程作为简单demo,没有对异常进行分类判断,只要发生了读写异常,就关闭链路,释放资源。

异步非阻塞IO版本的时间服务器服务端已经介绍完毕,下面我们继续看客户端的实现。

AIO客户端源码分析

首先看下客户端主函数的实现。
代码清单5 AIO时间服务器客户端 TimeClient

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public class TimeClient {
/**
* @param args
*/
public static void main(String[] args) {
int port = 8080;
if (args != null && args.length > 0) {
try {
port = Integer.valueOf(args[0]);
} catch (NumberFormatException e) {
// 采用默认值
}
}
new Thread(new AsyncTimeClientHandler("127.0.0.1", port),
"AIO-AsyncTimeClientHandler-001").start();
}
}

第15行我们通过一个独立的IO线程创建异步时间服务器客户端handler,在实际项目中,我们不需要独立的线程创建异步连接对象,因为底层都是通过JDK的系统回调实现的,在后面运行时间服务器程序的时候,我们会抓取线程调用堆栈给大家展示。继续看代码, AsyncTimeClientHandler的实现类源码如下:
代码清单6 AIO时间服务器客户端 AsyncTimeClientHandler

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
public class AsyncTimeClientHandler implements
CompletionHandler<Void, AsyncTimeClientHandler>, Runnable {
private AsynchronousSocketChannel client;
private String host;
private int port;
private CountDownLatch latch;
public AsyncTimeClientHandler(String host, int port) {
this.host = host;
this.port = port;
try {
client = AsynchronousSocketChannel.open();
} catch (IOException e) {
e.printStackTrace();
}
}
@Override
public void run() {
latch = new CountDownLatch(1);
client.connect(new InetSocketAddress(host, port), this, this);
try {
latch.await();
} catch (InterruptedException e1) {
e1.printStackTrace();
}
try {
client.close();
} catch (IOException e) {
e.printStackTrace();
}
}
@Override
public void completed(Void result, AsyncTimeClientHandler attachment) {
byte[] req = "QUERY TIME ORDER".getBytes();
ByteBuffer writeBuffer = ByteBuffer.allocate(req.length);
writeBuffer.put(req);
writeBuffer.flip();
client.write(writeBuffer, writeBuffer,
new CompletionHandler<Integer, ByteBuffer>() {
@Override
public void completed(Integer result, ByteBuffer buffer) {
if (buffer.hasRemaining()) {
client.write(buffer, buffer, this);
} else {
ByteBuffer readBuffer = ByteBuffer.allocate(1024);
client.read(
readBuffer,
readBuffer,
new CompletionHandler<Integer, ByteBuffer>() {
@Override
public void completed(Integer result,
ByteBuffer buffer) {
buffer.flip();
byte[] bytes = new byte[buffer
.remaining()];
buffer.get(bytes);
String body;
try {
body = new String(bytes,
"UTF-8");
System.out.println("Now is : "
+ body);
latch.countDown();
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}
}
@Override
public void failed(Throwable exc,
ByteBuffer attachment) {
try {
client.close();
latch.countDown();
} catch (IOException e) {
// ingnore on close
}
}
});
}
}
@Override
public void failed(Throwable exc, ByteBuffer attachment) {
try {
client.close();
latch.countDown();
} catch (IOException e) {
// ingnore on close
}
}
});
}
@Override
public void failed(Throwable exc, AsyncTimeClientHandler attachment) {
exc.printStackTrace();
try {
client.close();
latch.countDown();
} catch (IOException e) {
e.printStackTrace();
}
}
}

由于在AsyncTimeClientHandler中大量使用了内部匿名类,所以代码看起来稍微有些复杂,下面我们就对主要代码进行详细解说。

9-17行是构造方法,首先通过AsynchronousSocketChannel的open方法创建一个新的AsynchronousSocketChannel对象。然后跳到第36行,创建CountDownLatch进行等待,防止异步操作没有执行完成线程就退出。第37行通过connect方法发起异步操作,它有两个参数,分别如下:

1) A attachment : AsynchronousSocketChannel的附件,用于回调通知时作为入参被传递,调用者可以自定义;

2) CompletionHandler handler:异步操作回调通知接口,由调用者实现。

在本例程中,我们的两个参数都使用AsyncTimeClientHandler类本身,因为它实现了CompletionHandler接口。

接下来我们看异步连接成功之后的方法回调completed方法,代码第39行,我们创建请求消息体,对其进行编码,然后拷贝到发送缓冲区writeBuffer中,调用AsynchronousSocketChannel的write方法进行异步写,与服务端类似,我们可以实现CompletionHandler接口用于写操作完成后的回调,代码第45-47行,如果发送缓冲区中仍有尚未发送的字节,我们继续异步发送,如果已经发送完成,则执行异步读取操作。

代码第64-97行是客户端异步读取时间服务器服务端应答消息的处理逻辑,代码第49行我们调用AsynchronousSocketChannel的read方法异步读取服务端的响应消息,由于read操作是异步的,所以我们通过内部匿名类实现CompletionHandler接口,当读取完成被JDK回调时,我们构造应答消息。第56-63行我们从CompletionHandler的ByteBuffer中读取应答消息,然后打印结果。

第197-96行,当读取发生异常时,我们关闭链路,同时调用CountDownLatch的countDown方法让AsyncTimeClientHandler线程执行完毕,客户端退出执行。

需要指出的是,正如之前的NIO例程,我们并没有完整的处理网络的半包读写,当对例程进行功能测试的时候没有问题,但是,如果对代码稍加改造,进行压力或者性能测试,就会发现输出结果存在问题。

由于半包的读写会作为专门的小节在Netty的应用和源码分析章节进行详细讲解,在NIO的入门章节我们就不详细展开介绍,以便读者能够将注意力集中在NIO的入门知识上来。

AIO运行结果

执行TimeServer,如图1所示



图1 执行TimeServer结果

执行TimeClient,如图2所示



图2 执行TimeServer结果

Adhere to the original technology to share, your support will encourage me to continue to create!